A note on dimensions of polynomial size circuits

نویسنده

  • Xiaoyang Gu
چکیده

In this paper, we use resource-bounded dimension theory to investigate polynomial size circuits. We show that for every i ≥ 0, P/poly has ith order scaled p 3 -strong dimension 0. We also show that P/poly i.o. has p 3 -dimension 1/2, p 3 -strong dimension 1. Our results improve previous measure results of Lutz (1992) and dimension results of Hitchcock and Vinodchandran (2004).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 4 A note on dimensions of polynomial size circuits ∗

In this paper, we use resource-bounded dimension theory to investigate polynomial size circuits. We show that for every i ≥ 0, P/poly has ith order scaled p 3 -strong dimension 0. We also show that P/poly i.o. has p 3 -dimension 1/2, p 3 -strong dimension 1. Our results improve previous measure results of Lutz (1992) and dimension results of Hitchcock and Vinodchandran (2004).

متن کامل

Modeling of Substrate Noise Impact on a Single-Ended Cascode LNA in a Lightly Doped Substrate (RESEARCH NOTE)

Substrate noise generated by digital circuits on mixed-signal ICs can disturb the sensitiveanalog/RF circuits, such as Low Noise Amplifier (LNA), sharing the same substrate. This paperinvestigates the adverse impact of the substrate noise on a high frequency cascode LNA laid out on alightly doped substrate. By studying the major noise coupling mechanisms, a new and efficientmodeling method is p...

متن کامل

Notes on Complexity Theory Lecture 11

We have seen that there exist “very hard” languages (i.e., languages that require circuits of size (1 − ε)2n/n). If we can show that there exists a language in NP that is even “moderately hard” (i.e., requires circuits of super-polynomial size) then we will have proved P 6 = NP. (In some sense, it would be even nicer to show some concrete language in NP that requires circuits of super-polynomia...

متن کامل

A note on the size of Craig Interpolants

Mundici considered the question of whether the interpolant of two propositional formulas of the form F → G can always have a short circuit description, and showed that if this is the case then every problem in NP ∩ co-NP would have polynomial size circuits. In this note we observe further consequences of the interpolant having short circuit descriptions, namely that UP ⊆ P/poly, and that every ...

متن کامل

An Almost Cubic Lower Bound for ΣΠΣ Circuits Computing a Polynomial in VP

In this note, we prove that there is an explicit polynomial in VP such that any ΣΠΣ arithmetic circuit computing it must have size at least n3−o(1). Up to n factors, this strengthens a recent result of Kayal, Saha and Tavenas (ICALP 2016) which gives a polynomial in VNP with the property that any ΣΠΣ arithmetic circuit computing it must have size Ω̃(n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره   شماره 

صفحات  -

تاریخ انتشار 2004